Current Issues of Pharmacy and Medical Sciences

Analgesic effects of deltorphin analogues EW1 and EW2 in tail-immersion test in mice

Current Issues in Pharmacy and Medical Sciences Vol. 26, No. 4, Pages 448-452

EWA GIBUŁA-BRUZDA1, MARTA MARSZAŁEK1, EWA WITKOWSKA2, JOLANTA H. KOTLIŃSKA1

1 Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
2 Laboratory of Peptides, Department of Chemistry, University of Warsaw, Warsaw, Poland

DOI: 10.12923/j.2084-980X/26.4/a.22

 

Abstract

The aim of the study was to evaluate whether EW1 and EW2, the newly synthesized analogues of deltorphin, a highly potent mu- (MOP) and delta-opioid receptors (DOP) ligand, induce antinociceptive effects in the tail-immersion test after intracerebroventricular (i.c.v.) administration. Our study indicates that these peptides, administered at the dose of 20 nmol, exert stronger or comparable antinociceptive effects as those exerted by morphine (13 nmol). A more detailed study indicated that β-funaltrexamine (β-FNA) – a MOP antagonist - very strongly and, to the lower extent than naltrindole (NTI), a DOP antagonist, inhibited the antinociceptive effects of peptides, observed in the tail-immersion test. Nor-binaltorphimine (nor-BNI), a kappa-opioid receptor (KOP) antagonist, did not influence that effect. Those data indicated an involvement of both types of opioid receptors, MOP and DOP, in the antinociceptive effects of the peptides with a dominant role of MOP.

 

Keywords

deltorphin analogues, morphine, nociception, tail-immersion

References

  1. Arvidsson U. et al.: Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J. Neurosci., 15, 3328, 1995.
  2. Cahill C.M. et al.: Up-regulation and trafficking of delta opioid receptor in a model of chronic inflammation: implications for pain control. Pain, 101, 199, 2003.
  3. Dietis N., Rowbotham D.J., Lambert D.G.: Opioid receptor subtypes: fact or artifact? Br. J. Anaesth., 107, 8, 2011.
  4. Erspamer V. et al.: Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc. Natl. Acad. Sci. U. S. A., 86, 5188, 1989.
  5. Gomes I. et al.: Heterodimerization of μ and δ Opioid Receptors: A Role in Opiate Synergy. J. Neurosci., 20, RC110, 2000.
  6. Haley TJ, Mccormick WG.: Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br. J. Pharmacol. Chemother., 12, 12, 1957.
  7. Hayes A.G., Skingle M., Tyers M.B.: Effect of beta-funaltrexamine on opioid side-effects produced by morphine and U-50, 488H. J. Pharm. Pharmacol., 37, 841, 1985.
  8. Holdridge S.V., Cahill C.M.: Spinal administration of a delta opioid receptor agonist attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Eur. J. Pain, 11, 685, 2007.
  9. Inturrisi C.E.: Clinical pharmacology of opioids for pain. Clin. J. Pain., 18, S3, 2002.
  10. Janssen P.A., Niemegeers C.J., Dony J.G.: The inhibitory effect of fentanyl and other morphine-like analgesics on the warm water induced tail withdrawal reflex in rats. Arzneimittelforschung, 13, 502, 1963.
  11. Kabli N., Cahill C.M.: Anti-allodynic effects of peripheral delta opioid receptors in neuropathic pain. Pain, 127, 84, 2007.
  12. Kotlińska J.H. et al.: Antinociceptive effects of two deltorphins analogs in the tail-immersion test in rats. Peptides. 39, 103, 2013.
  13. Lazarus L.H. et al.: Opioid infidelity: novel opioid peptides with dual high affinity for delta- and mu-receptors. Trends Neurosci., 19, 31, 1996.
  14. Le Merrer J. et al.: Reward processing by the opioid system in the brain. Physiol. Rev., 89, 1379, 2009.
  15. Longoni R. et al.: [D-Ala²]deltorphin II: D1 dependent stereotypies and stimulation of dopamine release in the nucleus accumbens. J. Neurosci., 11, 1565, 1991.
  16. Lutz P.E., Kieffer B.L.: Opioid receptors: distinct roles in mood disorders. Trends Neurosci., 36, 195, 2013.
  17. Mansour A. et al.: Opioid receptor mRNA expression in the rat CSN: natomical and functioal implications. Trends Neurosci., 18, 22, 1995.
  18. Pavone F. et al.: Deltorphin, a naturally occurring peptide with high selectivity for delta opioid receptors, improves memory consolidation in two inbred strains of mice. Peptides, 11, 591, 1990.
  19. Portoghese P.S., Sultana M., Takemori A.E.: Naltrindole, a highly selective and potent non-peptide delta opioid receptor antagonist. Eur. J. Pharmacol., 146, 185, 1988.
  20. Salahpour A., Angers S., Bouvier M.: Functional significance of oligomerization of G protein-coupled receptors. Trends Endocrinol. Metab., 11, 163, 2000.
  21. Scherrer G. et al.: Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell, 137, 148, 2009.
  22. Sora I, Funada M, Uhl G.: The mu-opioid receptor is necessary for [D-Pen2, d-Pen5]enkephalin-induced analgesia. Eur. J. Pharmacol., 2, 324, 1997.
  23. Stefano G.B. et al.: [D-Ala2]deltorphin I binding and pharmacological evidence for a special subtype of delta opioid receptor on human and invertebrate immune cells. Proc. Natl. Acad. Sci. U. S. A., 89, 9316, 1992.
  24. Stein C. et al.: Peripheral mechanisms of pain and analgesia. Brain Res. Rev., 60, 90, 2009.
  25. Takemori A.E.et al.: Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J. Pharmacol. Exp. Ther., 246, 255, 1988.
  26. Trescot A.M. et al.: Opioid pharmacology. Pain Physician., 11, S133, 2008.

Calendar

April 2020

Mon Tue Wed Thu Fri Sat Sun
    01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30