Current Issues of Pharmacy and Medical Sciences

Effect of supernatants from Lactobacillus acidophilus culture on ATP levels in human gingival fibroblasts

Current Issues in Pharmacy and Medical Sciences Vol. 26, No. 2, Pages 140-143

Effect of supernatants from Lactobacillus acidophilus culture on ATP levels in human gingival fibroblasts
 

ANNA K. SZKARADKIEWICZ, JANINA STOPA

Department of Conservative Dentistry and Periodontology, University of Medical Sciences in Poznań, Poland

DOI: 10.12923/j.2084-980X/26.2/a.04

 

Abstract

Bacteria of Lactobacillus genus comprise around 1% of physiological flora in oral cavity. Despite numerous studies on Lactobacillus bacteria, their interaction with cells of host’s oral cavity has not been fully recognized.
Studies were performed on effects of super natants obtained from bacterial cultures of Lactobacillus acidophilus strains on ATP levels in human gingival fibroblasts (HGF-1) and on their viability. ATP levels were evaluated using luminescence test and cell viability was estimated using a fluorescence test.
Mean levels of ATP in cultures of control fibroblasts, HGF-1, supplemented with 10% PBS amounted to 4.90 ± 0.32 mln of RLU (rela tive light units). In turn, mean level of ATP in cul tures of HGF-1 fibroblasts supplemented with supernatants of H2O2-producing L. acidophilus cultures amounted to 5.94 ± 0.31 mln of RLU, and in the cul tures sup ple mented with su per natants of L. acidophilus producing no H2O2 it amounted to 5.88 ± 0.28 mln of RLU. The lev els of ATP ob tained in HGF-1 cultures with supernatants of L. acidophilus were significantly higher than those in control cultures. On the other hand, ATP levels in HGF-1 cultures with supernatants of H2O2-producing L. acidophilus cultures and with supernatants of H2O2-not producing L. acidophilus cultures showed no significant differences.
The presented for the first time in this study increase in ATP synthesis in gingival fibroblasts under effect of extracellular products of L. acidophilus cultures may represent an important protective mechanism in which oral lactobacilli influence human gingival fibroblasts.
 

Files to download

Keywords

Lactobacillus acidophilus, ATP, human gingival fibroblasts, microbial products

References

  1. Andrzejewska E., Szkaradkiewicz A.K.: Antagonistic effect of Lactobacillus acidophilus to selected periodontopathogens. XXVII Congress of the Polish Society of Microbiologists. September 5-8, 2012; Lublin, Poland. Scientific Materials, 2012.
  2. Cerning J.: Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait, 75, 463, 1995.
  3. Chen J.B. et al.: Adenosine-5'-triphosphate up-regulates proliferation of human cardiac fibroblasts. Br. J. Pharmacol., 166, 1140, 2012.
  4. Claesson M.J., van Sinderen D., O’Toole P.W.: The genus Lactobacillus – a genomic basis for understanding its diversity. FEMS Microbiol. Lett., 269, 22, 2007.
  5. Darveau R.P.: Periodontitis: a polymicrobial disruption of host homeostasis. Nature Rev. Microbiol., 8, 481, 2010.
  6. Foligne B. et al.: Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J. Gastroenterol., 13, 236, 2007.
  7. Gerasimovskaya E.V. et al.: Extracellular ATP-induced proliferation of adventitial fibroblasts requires phosphoinositide 3-kinase, Akt, mammalian target of rapamycin, and p70 S6 kinase signaling pathways. J. Biol. Chem., 280, 1838, 2005.
  8. Halper J. et al.: Wound healing and angiogenic properties of supernatants from Lactobacillus cultures. Exp. Biol. Med., 228, 1329, 2003.
  9. Henderson B., Ward J.M., Ready D.: Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A periodontopathogen? Periodontology 2000, 54, 78, 2010.
  10. Heo J.S., Han H.J.: ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells., 24, 2637, 2006.
  11. Kebschull M., Papapanou P.N.: Periodontal microbial complexes associated with specific cell and tissue responses. J. Clin. Periodontol., 38(Suppl. 11), 17, 2011.
  12. Khlyntseva S.V. et al.: Methods for the determination of adenosine triphosphate and other adenine nucleotides. J. Anal. Chem., 64, 657, 2009.
  13. Klaenhammer T.R.: Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 12, 39, 1993.
  14. Koka S., Reinhardt R.A.: Periodontal pathogen-related stimulation indicates unique phenotype of primary cultured human fibroblasts from gingiva and periodontal ligament: implications for oral health disease. J. Prosthet. Dent., 77, 191, 1997.
  15. Laws A.P. et al.: Determination of the structure and molecular weights of the exopolysaccharide produced by Lactobacillus acidophilus 5e2 when grown on different carbon feeds. Carbohydrate Res., 343, 301, 2008.
  16. Lemasters J.J. et al.: Role of mitochondrial inner membrane permeabilsation in necrotic cell death, apoptosis, and autophagy. Antioxid. Redox Signal., 4, 769, 2002.
  17. Li W.I., Brackett B.G., Halper J.: Culture supernatant of Lactobacillus acidophilus stimulates proliferation of embryonic cells. Exp. Biol. Med., 230, 494, 2005.
  18. Lin M.Y., Yen C.L.: Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem., 47, 1460, 1999.
  19. Lin Y. et al.: An antioxidant exopolysaccharide devoid of pro-oxidant activity produced by the soil bacterium Bordetella sp. B4. Biores. Technol., 124, 245, 2012.
  20. Pihlstrom B.L., Michalowicz B.S., Johnson N.W.: Periodontal diseases. Lancet, 366, 1809, 2005.
  21. Rabe L.K., Hillier S.L.: Optimization of media for detection of hydrogen peroxide production by Lactobacillus species. J. Clin. Microbiol., 41, 3260, 2003.
  22. Ryan C.S., Kleinberg I.: Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. Arch. Oral Biol., 40, 753, 1995.   
  23. Silva M. et al.: Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother., 31, 1231, 1987.
  24. Skulachev V.P.: Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis, 11, 473, 2006.
  25. Słońska A., Klimuszko D.: Bacteriocins of probiotic rods of the Lactobacillus genus [in Polish]. Post. Mikrobiol., 40, 87, 2010.
  26. Smith S.I. et al.: Lactobacilli in human dental caries and saliva. Microbios, 105, 77, 2001.
  27. Socransky S.S. et al.: Microbial complexes in subgingiwal plaque. J. Clin. Peridontol., 25, 134, 1998.
  28. Szkaradkiewicz A.K. et al.: Protective effect of oral lactobacilli in pathogenesis of chronic periodontitis. J. Physiol. Pharmacol., 62, 685, 2011.
  29. Szkaradkiewicz A.K., Karpiński T.M.: Microbiology of chronic periodontitis. J. Biol. Earth Sci.; 3, M14, 2013.
  30. Szkaradkiewicz A.K., Stopa J.: Lactobacillus spp. of oral cavity microflora in chronic periodontitis. Pol. J. Environ. Stud., 17, 236, 2008.
  31. Teanpaisan R., Piwat S., Dahlen G.: Inhibitory effect of oral Lactobacillus against oral pathogens. Lett. Appl. Microbiol., 53, 452, 2011.
  32. Yan J. et al.: Selenium promotes proliferation of chondrogenic cell ATDC5 by increment of intracellular ATP content under serum deprivation. Cell Biochem. Funct., 30, 657, 2012.
prev next

 

Calendar

April 2020

Mon Tue Wed Thu Fri Sat Sun
    01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30