Current Issues of Pharmacy and Medical Sciences

Additive interaction of levetiracetam with lamotrigine in the mouse 6 Hz psychomotor seizure model – an isobolographic analysis

Current Issues in Pharmacy and Medical Sciences Vol. 26, No. 1, Pages 82-87

JAROGNIEW J. ŁUSZCZKI1,2, ALEKSANDRA WLAŹ1, EWA MARZĘDA2,
DARIUSZ DURMOWICZ2, MAGDALENA FLOREK-ŁUSZCZKI3

1 Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
2 Isobo lo graphic Analysis Labo ra tory, In stitute of Ru ral Health, Jaczewskiego 2, PL 20-950 Lublin, Po land
3 Department of Public Health, Institute of Rural Health, Jaczewskiego 2, PL 20-950 Lublin, Poland

DOI: 10.12923/j.2084-980X/26.1/a.18

 

Abstract

The aim of this study was to characterize the anticonvulsant effects of levetiracetam (LEV) in combination with lamotrigine (LTG – a second-generation antiepileptic drug), in the mouse 6 Hz psychomotor seizure model. Limbic (psychomotor) seizure activity was evoked in albino Swiss mice by a current (32 mA, 6 Hz, 3 s stimulus duration) delivered via ocular electrodes and isobolographic analysis for parallel dose-response relationship curves (DRRCs) was used to characterize the consequent anticonvulsant interactions between the drug combinations. Results indicated that LEV administered singly was associated with a DRRC that was parallel to that for LTG. With isobolography for parallel DRRCs, the combination of LEV with LTG at three fixed-ratios of 1:3, 1:1 and 3:1 exerted additive interaction. LEV combined with LTG exerted additive interaction in the mouse 6 Hz psychomotor seizure model.

Keywords

6 Hz psychomotor seizure model, antiepileptic drugs, drug interactions, lamotrigine, levetiracetam, isobolographic analysis

References

  1. Barton M.E. et al.: Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res., 47, 217, 2001.
  2. Cheung H., Kamp D., Harris E.: An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res., 13, 107, 1992.
  3. Deckers C.L.P. et al.: Current limitations of antiepileptic drug therapy: a conference review. Epilepsy Res., 53, 1, 2003.
  4. Donato Di Paola E. et al.: Influence of levetiracetam on the anticonvulsant efficacy of conventional antiepileptic drugs against audiogenic seizures in DBA/2 mice. Epilepsy Res., 75, 112, 2007.
  5. Dudra-Jastrzebska M. et al.: Isobolographic characterization of the anticonvulsant interaction profiles of levetiracetam in combination with clonazepam, ethosuximide, phenobarbital and valproate in the mouse pentylenetetrazole-induced seizure model. Seizure, 18, 607, 2009.
  6. Dudra-Jastrzebska M. et al.: Pharmacodynamic and pharmacokinetic interaction profiles of levetiracetam in combination with gabapentin, tiagabine and vigabatrin in the mouse pentylenetetrazole-induced seizure model: An isobolographic analysis. Eur. J. Pharmacol., 605, 87, 2009.
  7. EP 2 462 990 A1 (European Patent Application; https://data.epo.org/publication-server/rest/v1.0/publication-dates/20120613/patents/EP2462990NWA1/document.pdf)
  8. Gower A.J. et al.: Effects of levetiracetam, a novel antiepileptic drug, on convulsant activity in two genetic rat models of epilepsy. Epilepsy Res., 22, 207, 1995.
  9. Gower A.J. et al.: Ucb L059, a novel anti-convulsant drug: pharmacological profile in animals. Eur. J. Pharmacol., 222, 193, 1992. Erratum published in: Eur. J. Pharmacol., 230, 389, 1993.
  10. Kaminski R.M. et al.: Benefits of combination therapy in epilepsy: a review of preclinical evidence with levetiracetam. Epilepsia, 50, 387, 2009.
  11. Klitgaard H. et al.: Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur. J. Pharmacol., 353, 191, 1998.
  12. Leach M.J., Marden C.M., Miller A.A.: Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia, 27, 490, 1986.
  13. Litchfield J.T., Wilcoxon F.: A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther., 96, 99, 1949.
  14. Loewe S.: The problem of synergism and antagonism of combined drugs. Arzneimittelforschung, 3, 285, 1953.
  15. Löscher W., Hönack D.: Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur. J. Pharmacol., 232, 147, 1993.
  16. Lukyanetz E.A., Shkryl V.M., Kostyuk P.G.: Selective blockade of N-type calcium channels by levetiracetam. Epilepsia, 43, 9, 2002.
  17. Lynch B.A. et al.: The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA,  101, 9861, 2004.
  18. Łuszczki J.J. et al.: Pharmacodynamic and pharmacokinetic characterization of interactions between levetiracetam and numerous antiepileptic drugs in the mouse maximal electroshock seizure model: an isobolographic analysis. Epilepsia, 47, 10, 2006.
  19. Łuszczki J.J. et al.: Levetiracetam selectively potentiates the acute neurotoxic effects of topiramate and carbamazepine in the rotarod test in mice. Eur. Neuropsychopharmacol., 15, 609, 2005.
  20. Łuszczki J.J. et al.: Levetiracetam and felbamate interact both pharmacodynamically and pharmacokinetically: an isobolographic analysis in the mouse maximal electroshock model. Epilepsia, 48, 806, 2007.
  21. Łuszczki J.J., Antkiewicz-Michaluk L., Czuczwar S.J.: Isobolographic analysis of interactions between 1-methyl-1,2,3,4-tetrahydroisoquinoline and four conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Eur. J. Pharmacol., 602, 298, 2009.
  22. Łuszczki J.J., Czuczwar S.J.: How significant is the difference between drug doses influencing the threshold for electroconvulsions? Pharmacol. Rep., 57, 782, 2005.
  23. Łuszczki J.J., Czuczwar S.J.: Isobolographic profile of interactions between tiagabine and gabapentin: a preclinical study. Naunyn-Schmiedebergs Arch. Pharmacol., 369, 434, 2004.
  24. Łuszczki J.J., Czuczwar S.J.: Preclinical profile of combinations of some second-generation antiepileptic drugs: an isobolographic analysis. Epilepsia, 45, 895, 2004.
  25. Łuszczki J.J. et al.: Isobolographic and behavioral characterizations of interactions between vigabatrin and gabapentin in two experimental models of epilepsy. Eur. J. Pharmacol., 595, 13, 2008.
  26. Łuszczki J.J. et al.: Isobolographic analysis of interactions between loreclezole and conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Naunyn-Schmiedebergs Arch. Pharmacol., 373, 169, 2006.
  27. Łuszczki J.J. et al.: Isobolographic characterization of interaction of levetiracetam with clobazam in the mouse 6 Hz psychomotor seizure model. J. Pre-Clin. Clin. Res., 6, 25, 2012.
  28. Madeja M. et al.: Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology, 45, 661, 2003.
  29. Marrosu F. et al.: Levetiracetam attenuates spontaneous spike-and-wave discharges in DBA/2J mice. Epilepsy Res., 75, 224, 2007.
  30. Mazarati A.M. et al.: Anticonvulsant effects of levetiracetam and levetiracetam-diazepam combinations in experimental status epilepticus. Epilepsy Res., 58, 167, 2004.
  31. Niespodziany I., Klitgaard H., Margineanu D.G.: Levetiracetam inhibits the high-voltage-activated Ca(2+) current in pyramidal neurones of rat hippocampal slices. Neurosci. Lett., 306, 5, 2001.
  32. Palma E. et al.: GABA(A)-current rundown of temporal lobe epilepsy is associated with repetitive activation of GABA(A) "phasic" receptors. Proc. Natl. Acad. Sci. USA, 104, 20944, 2007.
  33. Patsalos P.N.: Clinical pharmacokinetics of levetiracetam. Clin. Pharmacokinet., 43, 707, 2004.
  34. Perucca E.: Pharmacological principles as a basis for polytherapy. Acta Neurol. Scand. Suppl., 162, 31, 1995.
  35. Rigo J.M. et al.: The anti-epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents. Br. J. Pharmacol., 136, 659, 2002.
  36. Sills G.J. et al.: Pharmacodynamic interaction studies with topiramate in the pentylenetetrazol and maximal electroshock seizure models. Seizure, 13, 287, 2004.
  37. Stefani A., Spadoni F., Bernardi G.: Voltage-activated calcium channels: targets of antiepileptic drug therapy? Epilepsia, 38, 959, 1997.
  38. Tallarida R.J. (2000). Drug synergism and dose-effect data analysis. Chapman & Hall/CRC, Boca Raton, USA.
  39. Vinogradova L.V., van Rijn C.M.: Anticonvulsive and antiepileptogenic effects of levetiracetam in the audiogenic kindling model. Epilepsia, 49, 1160, 2008.
  40. Wojda E. et al.: Isobolographic characterization of interactions of levetiracetam with the various antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. Epilepsy Res., 86, 163, 2009.
  41. Zona C. et al.: Levetiracetam does not modulate neuronal voltage-gated Na+ and T-type Ca2+ currents. Seizure, 10, 279, 2001.
prev next

 

Calendar

April 2020

Mon Tue Wed Thu Fri Sat Sun
    01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30