Current Issues of Pharmacy and Medical Sciences

Quantitative analysis of biofilm formation by oropharyngeal Candida albicans isolates under static conditions by confocal

Current Issues in Pharmacy and Medical Sciences Vol. 26, No. 1, Pages 54-56

Quantitative analysis of biofilm formation by oropharyngeal Candida albicans isolates under static conditions by confocal scanning laser microscopy
 

BEATA CHUDZIK-RZĄD1*, ANNA MALM1, TOMASZ PIERSIAK2, ANTONI GAWRON2

1Department of Pharmaceutical Microbiology, Medical University of Lublin, Poland
2Department of Comparative Anatomy and Anthropology, University of Maria Curie-Sklodowska, Poland

DOI: 10.12923/j.2084-980X/26.1/a.11

 

Abstract

Candida albicans may colonize natural or artificial surfaces, leading to formation of the biofilm. Infections associated with the biofilm formation are important therapeutic problem. In this paper, we present data concerning the biofilm formation under static conditions by oropharyngeal isolates of C. albicans on a glass surface using confocal scanning laser microscopy (CSLM). The areal parameters describing the architecture of biofilm and its development, i.e. the areal porosity, the length of edge line, the length of skeleton line, were calculated. The changes in values of these parameters during the biofilm formation by C. albicans were similar for biofilm consisting of only blastospores as well as the biofilm consisting of blastospores and filamentous elements (hyphae or/and pseudohyphae). However, the thickness of C. albicans biofilm consisting of blastospores and filamentous elements was much higher than that consisting of only blastospores. The heterogeneity may be regarded as an important feature of the yeast biofilm including C. albicans.

Keywords

References

  1. Andes D. et al.: Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect. Immun., 72, 6023, 2004.
  2. Baillie G.S., Douglas L.J.: Effect of growth rate on resistance of Candida albicans biofilm to antifungal agents. Antimicrob. Agents Chemother., 42, 1900, 1998.
  3. Beyenal H. et al.: Three-dimensional biofilm structure quantification. J. Microbiol. Methods., 59, 395, 2004a.
  4. Beyenal H., Lewandowski Z., Harkin G.: Quantifying biofilm structure: facts and fiction. Biofouling., 20, 1, 2004b.
  5. Chandra J. et al.: Biofilm formation by the fungal pathogen Candida albicans: development, architecture and drug resistance. J. Bacteriol., 183, 5385, 2001.
  6. Douglas L.J.: Candida biofilms and their role in infection. Trends. Microbiol., 11, 30, 2003.
  7. Douglas L.J.: Medical importance of biofilms in Candida infections. Rev. Iberoam. Micol., 19, 139, 2002.
  8. Girish Kumar C.P., Menon T.: Biofilm production by clinical isolates of Candida species. Med. Mycol., 44, 99, 2006.
  9. Harrison J.J. et al.: Metal resistance in Candida biofilms. FEMS. Microbiol. Ecol., 55, 479, 2006.
  10. Hawser S.P., Douglas L.J.: Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob. Agents Chemother., 39, 2128, 1995.
  11. Jin Y. et al.: The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia., 159, 353, 2005.
  12. Kuhn D.M. et al.: Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect. Immun., 70, 878, 2002.
  13. Lal P. et al.: Exopolisaccharide analysis of biofilm-forming Candida albicans. J. Appl. Microbiol., 109, 128, 2010.
  14. Paiva L.C. et al.: Scanning electron and confocal scanning laser microscopy imaging of the ultrastructure and viability of vaginal Candida albicans and non-albicans species adhered to an intrauterine contraceptive device. Microsc. Microanal., 16, 537, 2010.
  15. Palmer R.J., Jr, Sternberg C.: Modern microscopy in biofilm research: confocal microscopy and other approaches. Curr. Opin. Biotechnol., 10, 263, 1999.
  16. Ramage G. et al.: Characteristics of biofilm formation by Candida albicans. Rev. Iberoam. Micol., 18, 163, 2001a.
  17. Ramage G. et al.: Biofilm formation by Candida dubliniensis. J. Clin. Microbiol., 39, 3234, 2001b.
  18. Ramage G., Martinez J.P., López-Ribot J.L.: Candida biofilm on implanted biomaterials: a clinically significant problem. FEMS. Yeast Res., 6, 979, 2006.
  19. Seidler M., Salvenmoser S., Müller F.M.C.: Liposomal amphotericin B eradicates Candida albicans biofilm in a continuous catheter flow model. FEMS. Yeast Res., 10, 492, 2010.
  20. Van Meerbeek B. et al.: Microscopy investigations. Techniques, results, limitations. Am. J. Dent., 13, 3D, 2000.
  21. Xavier J.B., Picioreanu C., van Loosdrecht M.C.: Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging. Water. Sci. Technol., 49, 177, 2004.
  22. Yang X. et al.: Quantifying biofilm structure using image analysis. J. Microbiol. Methods., 39, 109, 2000.
prev next

 

Calendar

July 2020

Mon Tue Wed Thu Fri Sat Sun
    01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31