Current Issues of Pharmacy and Medical Sciences

Methods for the isolation and identification of triterpenes and sterols in medicinal plants

Current Issues in Pharmacy and Medical Sciences Vol. 26, No. 1, Pages 26-32


Chair and Department of Pharmacognosy with the Medicinal Plant Unit, Medical University of Lublin, Poland

DOI: 10.12923/j.2084-980X/26.1/a.05



Scientists around the world are constantly working on new drugs to fight many incurable diseases. Great hopes come with triterpene compounds and sterols. Refinement and selection of the appropriate techniques of isolation and identification, allows for a more satisfactory recovery sought from plant matter. This paper presents the most commonly used techniques for the isolation and identification of triterpenes and sterols. 


triterpene compounds, sterols, HPLC metod, TLC method


  1. Berger Berger. et al.: Plant sterols: factor affecting their efficacy and safety as functional food ingredients. Lipids Health Dis., 3, 5, 2004.
  2. Biały, Z. et al.: Saponins in alfaalfa (Medicago sativa L.) root and their structural elucidation. J. Agric. Food Chem. 47, 3185, 1999.
  3. Brown P.N.: Determination of ginsenoside content in Asian and North American ginseng raw materials and finished products by high-performance liquid chromatography: single-laboratory validation. J. AOAC Int., 94, 1391-9, 2011.
  4. Claude B., Viron-Lamy, C. et al.: Synthesis of a molecularly imprinted polymer for the solid-phase extraction of betulin and betulinic acid from plane bark. Phytochem. Anal., 180-185, 2010.
  5. Cui H.M. et al.: Determination of effective components in different position of Panax notoginseng by HPLC. Zhong. Yao. Cai., 32, 1810-3, 2009.
  6. Culioli, G. et al.: A lupane triterpene from frankincense (Boswellia sp., Burseraceae). Phytochemistry, 62, 537, 2003
  7. Devaraj S., Jialal I.: The role of dietary supplementation with plant sterols and stanols in the prevention of cardiovascular disease. Nutr. Rev., 64, 348, 2006.
  8. Durst, H.D., Milano et al.: Phenacyl esters of fatty acids via crown ether catalysts for ehanced ultraviolet detection in liquid chromatography. Anal. Chem., 47, 1797, 1975.
  9. Elisandra C. et al.: Comparison of classical and ultrasound-assisted extractions of steroids and triterpenoids from three Chresta spp Ultrasonics Sonochemistry, 11, 415–421, 2004.
  10. Fan J.-P., Zhang R.-F, Zhu J.-H.: Optimization of microwave assisted extraction of total triterpenoid in Diospyros kaki leaves using response surface methodology. Asian Journal of Chemistry, 22, 5, 3487-3500, 2010.
  11. Felfoldi-Gava, A. et al.: Betulaceae and platanaceae plants as alternative sources of selected lupane-type triterpenes. Their composition profile and betulin content. 671-681, 2009.
  12. Fitzaprick, F.A., and Siggia, S., High resolution liquid chromatography of derivatived non-ultraviolet absorbing hydroxy steroids. Anal. Chem., 45, 2310, 1973.
  13. Fitzaprick, F.A., and Siggia, S., and Dingman, J., High speed liquid chromatography of derivatized urinary 17-keto steroids. Anal. Chem., 44, 2211, 1972.
  14. Gafner, S. et al.: Evaluation of the efficiency of three different solvent systems to extract triterpene saponins from roots of Panax quinquefolius using high-performance liquid chromatography. J. Agric. Food Chem., 52, 1546, 2004.
  15. Gao Y. Et al.:Study of the extraction process and in vivo inhibitory effect of ganoderma triterpenes in oral mucosa cancer. Molecules, 16, 7, 5315-5332, 2011.
  16. Gawrońska-Grzywacz M., Krzaczek T.: Identification and determination of triterpenoids in Hieracium Pilosella L. J. Sep. Sci., 30, 746-750, 2007.
  17. Hodisan T. et al.: Separation, identification and quantitative determination of free amino acids from plant extracts. J. Pharm. Biomed. Anal., 18, 319-23, 1998.
  18. Huang, H.-C., et al.: Molluscicidial saponins from Sapindus mukorossi, inhibitory agents of golden apple snails, Pomacea canaliculata. J. Agric. Food Chem., 51, 4916, 2003.
  19. Ikan, R., Cudzinovski, M.: Separation of sterols and corresponding stanols on thin layers of silica impregnated with silver nitrate. J. Chromatogr., 18, 422, 1965.
  20. Jäger S. et al.: Pentacyclic Triterpene Distribution in Various Plants – Rich Sources for a New Group of Multi-Potent Plant Extracts. Molecules, 14, 2016-2031, 2009.
  21. Ji, Z et al.: Induction of apoptosis in the SW620 colon carcinoma cell line by triterpene-enriched extracts from Ganoderma lucidum through activation of
    casapase-3. Oncol. Lett., 565-570, 2011.
  22. Jurzysta, M., Jurzysta, A.: Thin-layer chromatography of acetyl derivatives of soyasapogenols A, B, C, D and E. J. Chromatogr., 179, 233, 1979.
  23. Kączkowski J.: Biochemia roślin. T.1 PWN, Warszawa 1987.
  24. Knorr, R., and Hamburger, M.: Quantitative analysis of anti-inflammatory and radical scavenging triterpenoid esters in evening primrose oil. J. Agric. Food Chem., 52, 3319, 2004.
  25. Kohlmünzer S.: Farmakognozja. Podręcznik dla studentów farmacji. PZWL, 309, 341, 2000.
  26. Kowalski R.: Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types. J. Agric. Food Chem., 55, 656-62, 2007.
  27. Krygier K.: Fitosterole - istotny czynnik obniżający poziom cholesterolu we krwi. Przem. Spoż., 56, 18, 2002.
  28. Lee M.K. et al.: Development of a validated liquid chromatographic method for the quality control of Prunellae Spica: Determination of triterpenic acids. Anal. Chim. Acta., 633, 271-277, 2009.
  29. Li. Y.-K. et al.: Study of determination of triterpenoids in Chaenomeles by high performance liquid chromatography and sample preparation with matrix solid phase dispersion. J. Chin. Med. Soc., 1332-1337, 2008.
  30. Liu JJ. et al.: Determination of ergosterol in Ganoderma lucidum from different varieties and cultured tree species by HPLC. Zhong Yao Cai., 34(2), 187-190, 2011.
  31. Lisboa, B.P. Thin layer chromatography of steroids. Meth. Enzymol., 15, 3, 1969.
  32. Mackie, A.M., et. al.: Studiem of distribution, biosynthesis and function of steroidal saponins in echinoderms. Comp. Biochem. Physiol., 56, 9, 1997.
  33. Martelanc M. et al.: Separation and identification of some common isomeric plant triterpenoids by thin-layer chromatography and high-performance liquid chromatography. J. Chromatogr. A., 1216, 6662-6670, 2009.
  34. Melek, F.R. et al.: Triterpenoid saponins from Schefflera arboricola. Phytochemistry, 63, 401, 2003.
  35. Metcalf, R.L. et al.: Cucurbitacins as kairomones for Diabroticite beetles. Proc. Natl. Acad. Sci., USA, 77. 3769, 1980.
  36. Mshvildadze V. Et al.: Triterpenoid saponins from leaves of Hedera pastuchowii. Chem. Pharm. Bull., 52, 1414, 2004.
  37. Murphy, B.T. et al.: Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinum macrocarpon). J. Agric. Food Chem., 51, 3542, 2003.
  38. Oleszek, W.: Chromatographic determination of plant saponins. J. Chromatogr. A., 967, 147, 2002.
  39. Peters, R.R., et al.: Nitric oxide and cyclooxygenase may participate in the analgesic and anti-inflammatory effect of the cucurbitacins fraction from Wilbrandia ebracteata. Life Sci., 73, 2185-97, 2003.
  40. Pu R. et al.: Fingerprint analysis of Radix Glycyrrhizae by fast HPLC. ZhongguoZhong Yao. Za. Zhi., 33, 2650-2652, 2008.
  41. Qi L.W. et al.: Diagnostic ion filtering to characterize ginseng saponins by rapid liquid chromatography with time-of-light mass spectrometry. J. Chromatogr. A., 1230, 93-99, 2012.
  42. Razborsek, M.I. et al.: Determination of major phenolic acids, phenolic diterpenes and triterpenes in rosemary (Rosmarinus officinalis L.) by gas chromatography and mass spectrometry. Acta. Chim. Slov., 60-67, 2007.
  43. Różański H.: Naturalne substancje anaboliczne.
  44. Rupasinghe, H.P.V., et al.: Soyasapogenol A and B distribution in soyabean (Glycine max L. Merr.) in relation to speed physiology, genetic variability, and growing location. J. Agric. Food Chem., 51, 5880, 2003.
  45. Sadle-Sosnowska, N.: Determination of glycyrrhizenic amid and glycyrrhetinic amid in pharmaceuticals by high-performance liquid chromatography. J. Pharm. Biomed. Anal., 5, 289, 1987.
  46. Saito K., Horie M. et al.: HPLC determination of glycoalkaloids in potato products. J. Chromatogr., 141, 508, 1990.
  47. Schmidt, T.J. et al.: New triterpene esters from flowerheads of Arnica lonchophylla. Planta Med., 70, 968, 2004.
  48. Sima´ndi a et al.: Supercritical fluid extraction of dandelion leaves. Journal of Supercritical Fluids, 23, 135–142, 2002.
  49. Srivastava P., Chaturvedi R.: Simultaneous determination and quantification of three pentacyclic triterpenoids- betulinic acid, oleanolic acid, and ursolic acid – in cell cultures of Lantana camara L. In Vitro Cell. Dev. Biol., 46, 549-557, 2010.
  50. Sticher, O., and Soldati, F.: HPLC separation and quantitative determination of ginsenosides from Panax ginseng, Panax quinquefolium and from ginseng drug preparations. Planta. Med., 36, 30, 1979.
  51. Strzelecka H., Kowalski J.: Encyklopedia zielarstwa i ziołolecznictwa. PWN, 645, 2000.
  52. Tarvainen M. et al.: Triterpene Acids in Plantago major: Identification, quantification and comparison of different extraction methods. Chromatogr., 71, 279-284, 2010.
  53. Tsai, T.H., and Chen, C.F., Determination of three active principles in licorice extract by reversed phase high performance liquid chromatography. J. Chromatogr., 542, 521, 1991.
  54. Van der Heuvel M.R. et. al.: Assessment of the reproductive endocrine disrupting potential of chlorine dioxide oxidation products of plant sterols. Environ. Sci. Technol., 40, 2594, 2006.
  55. Vetal M.D., Lade V.G., Rathod V.K.: Extraction of ursolic acid from Ocimum sanctum leaves: Kinetics and modeling. Food and Bioproducts Processing, 90, 793-798, 2012.
  56. Wagner H. et al.: Plant Drug Analysis. A Thin Layer Chromatography Atlas. Springer-Verlag, Berlin, 320, 1984.
  57. Waksmundzka-Hajnos M. et al.: High Performance Liquid Chromatography in phytochemical Analysis. High Performance Liquid Chromatography of Triterpenes (Including Saponins). 25, 639-651, CRC Press, Boca Raton 2011.
  58. Waksmundzka-Hajnos M. et al.: Thin Layer Chromatography in Phytochemistry. TLC of Triterpenes (Including Saponins). 20, 519-537, CRC Press, Boca Raton 2008.
  59. Wang Y.C., Yang Y.S.: Simultaneous quantification of flavonoids and triterpenoids in licorice using HPLC. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 392-9, 2007.
  60. Wójciak-Kosior M. et al.: Effect of different extraction techniques on quantification of oleanolic and ursolic acid in Lamii albi flos. Ind. Crops Prod., 44, 373-377, 2013.
  61. Xia. E.-Q. et. al.: Microvave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum ait. Int. J. Mol. Sci., 5319-5329, 2011.
  62. Xia E.Q. et al.: Ultrasound-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait. Ultrason. Sonochem., 19, 772-776, 2012.
  63. Xiao B.Y. et al.: Variations in the composition of Fructus Evodiae after processing with Radix Glycyrrhizae extract. Chin. J. Integr. Med., 782-787, 2012.
  64. Xu, C.-J., and Lin J.-T., Comparision of silica-, C18-, and NH2-HPLC colums for the separation of neutral steroid saponins from Dioscorea plants. J. Liq. Chromatogr., 8, 361, 1985.
  65. Xu H. et al.: A rapid method for simultaneous determination of triterpenoid saponins in Pulsatilla turczaninovii using microwave-assisted extraction and high performance liquid chromatography–tandem mass spectrometry. Food Chemistry, 135, 251-258, 2012.
  66. Yoshikawa, M. et al.: Structures of new dammarane-type triterpene saponins from the flower buds of Panax notoginseng and hepatotoprotective effects of principial ginseng saponins. J. Nat. Prod., 66, 926, 2003.
prev next



July 2020

Mon Tue Wed Thu Fri Sat Sun
    01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31